$\frac{52}{55}$

$\frac{3}{55}$

$\frac{41}{44}$

$\frac{3}{44}$

C. $\frac{41}{44}$

Total cases =${}^{12}c_{3}$

$=\frac{12\times 11\times 10}{3\times 2\times 1}=220$

Total cases of drawing same colour =${}^{5}c_{3}+{}^{4}c_{3}+{}^{3}c_{3}$

$\frac{5\times 4}{2\times 1}+4+1=15$

Probability of same colur $==\frac{15}{220}=\frac{3}{44}$

Probability of not same colur =$1-\frac{3}{44}$

=$\frac{41}{44}$

$\frac{3}{4}$

$\frac{1}{4}$

$\frac{7}{4}$

$\frac{1}{2}$

$\frac{1}{2}$

$\frac{1}{3}$

$\frac{3}{2}$

$\frac{3}{4}$

$\frac{1}{2}$

$\frac{1}{3}$

$\frac{1}{5}$

$\frac{1}{6}$

$\frac{4}{13}$

$\frac{1}{52}$

$\frac{1}{4}$

None of above

$\frac{7}{19}$

$\frac{6}{19}$

$\frac{5}{19}$

$\frac{4}{19}$

$\frac{1}{3}$

$\frac{1}{9}$

$\frac{1}{12}$

$\frac{2}{9}$

1

2

$\frac{1}{2}$

0

$\frac{1}{13}$

$\frac{2}{13}$

$\frac{1}{26}$

$\frac{1}{52}$

30%

35%

40%

45%

$\frac{2}{3}$

$\frac{8}{21}$

$\frac{3}{7}$

$\frac{9}{22}$

$\frac{52}{55}$

$\frac{3}{55}$

$\frac{41}{44}$

$\frac{3}{44}$

1

2

$\frac{1}{2}$

0

1

$\frac{2}{3}$

$\frac{1}{3}$

$\frac{4}{3}$

$\frac{1}{3}$

$\frac{1}{6}$

$\frac{1}{2}$

$\frac{1}{8}$

$\frac{2}{121}$

$\frac{2}{221}$

$\frac{1}{221}$

$\frac{1}{13}$