**A sum of money amounts to rs.6690 after 3 years and to rs.10,035 after 6 years on compound interest. Find the sum.**

3467

4560

4460

7890

C. 4460

*Let the sum be rs.P.then*

*P(1+R/100) ^{3}=6690…(i) and P(1+R/100)^{6}=10035…(ii)*

*On dividing, we get (1+R/100) ^{3}=10025/6690=3/2.*

*Substituting this value in (i),we get:*

*P*3/2=6690 or P=(6690*2/3)=4460*

*Hence, the sum is rs.4460.*

512

612

712

812

1261

1234

1256

1287

*The difference *between *the compound interest *and *simple interest *on a *certain sum *at 10% *per *annum *for *2 *years is Rs. *631. *Find the sum.*

53,100

52,900

63,100

64,500

*If the compound interest *on a *certain sum *at 16 (2/3)% *to *3 *years is Rs.1270, find the simple interest *on *the same sum *at *the same *rate and *f or the *same period.

1080

1089

2345

1908

*If Rs. 500 amounts *to *Rs. 583.20 in *two years *compounded *annually, find the rate of *interest per *annum.

7%p.a

8%p.a

9%p.a

10%p.a

10%

12%

13%

15%

3467

4560

4460

7890

3109

3210

3901

1309

*Find the compound interest ***on Rs. 16,000 at 20% per annum for 9 months, Compounded quarterly.**

2344

2455

3244

2522

1 year

4 year

3 year

6 year

5400

6400

7400

8767

34 years

37 years

45 years

47 years

*Find the compound interest ***on Rs. 10,000 in 2 years at 4% per annum, **

823

824.32

798.67

800