$\frac{3}{4}$

$\frac{1}{4}$

$\frac{7}{4}$

$\frac{1}{2}$

A. $\frac{3}{4}$

Total number of cases =$6\times 6=36$

Favourable cases = [(1,2),(1,4),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,2),(3,4),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,2),(5,4),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)] = 27

So Probability =$\frac{27}{36}=\frac{3}{4}$

$\frac{1}{13}$

$\frac{2}{13}$

$\frac{1}{26}$

$\frac{1}{52}$

$\frac{7}{19}$

$\frac{6}{19}$

$\frac{5}{19}$

$\frac{4}{19}$

$\frac{2}{3}$

$\frac{8}{21}$

$\frac{3}{7}$

$\frac{9}{22}$

$\frac{2}{121}$

$\frac{2}{221}$

$\frac{1}{221}$

$\frac{1}{13}$

$\frac{52}{55}$

$\frac{3}{55}$

$\frac{41}{44}$

$\frac{3}{44}$

$\frac{3}{4}$

$\frac{1}{4}$

$\frac{7}{4}$

$\frac{1}{2}$

1

2

$\frac{1}{2}$

0

1

$\frac{2}{3}$

$\frac{1}{3}$

$\frac{4}{3}$

1

2

$\frac{1}{2}$

0

$\frac{1}{2}$

$\frac{1}{3}$

$\frac{3}{2}$

$\frac{3}{4}$

$\frac{4}{13}$

$\frac{1}{52}$

$\frac{1}{4}$

None of above

$\frac{1}{3}$

$\frac{1}{6}$

$\frac{1}{2}$

$\frac{1}{8}$

$\frac{1}{2}$

$\frac{1}{3}$

$\frac{1}{5}$

$\frac{1}{6}$

30%

35%

40%

45%

$\frac{1}{3}$

$\frac{1}{9}$

$\frac{1}{12}$

$\frac{2}{9}$